New Solutions to Nonlinear Ordinary Differential Equations
نویسندگان
چکیده
منابع مشابه
Solutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations
This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...
متن کاملNew solutions for ordinary differential equations
This paper introduces a new method for solving ordinary differential equations (ODEs) that enhances existing methods that are primarily based on finding integrating factors and/or point symmetries. The starting point of the new method is to find a non-invertible mapping that maps a given ODE to a related higher-order ODE that has an easily obtained integrating factor. As a consequence, the rela...
متن کاملNonlinear Ordinary Differential Equations
Most physical processes are modeled by differential equations. First order ordinary differential equations, also known as dynamical systems, arise in a wide range of applications, including population dynamics, mechanical systems, planetary motion, ecology, chemical diffusion, etc., etc. See [19, 72,ODES] for additional material and applications. The goal of this chapter is to study and solve i...
متن کاملBounds for Solutions of Ordinary Differential Equations
1. An upper bound for the norm of a system of ordinary differential equations can be obtained by comparison with a related first order differential equation, [4; 8]. This first order equation depends on an upper bound for the norm of the right side of the system. Recently, it has been pointed out [l; 6] that this same upper bound also gives a lower bound for the norm of the solution in terms of...
متن کاملWavelet Galerkin Solutions of Ordinary Differential Equations
Abstract. Advantage of wavelet Galerkin method over finite difference or element method has led to tremendous applications in science and engineering. In recent years there has been increasing attempt to find solutions of differential equations using wavelet techniques. In this paper, we elaborate the wavelet techniques and apply Galerkin procedure to analyse one dimensional harmonic wave equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2011
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2011.11002